le nucléaire
Modérateur : moderateur
le nucléaire
voici mon exercice:
une association a offert en 1921, un gramme de radium 226 à Marie Curie. La demie-vie t(1/2) du radium est 1600ans.
calculer la masse de radium restant aujourd'hui dans cet échantillon.
J'ai calucler le nombre de noyaux radioactifs initial par la relation No= n*Na. J'ai trouvé N=2,66*10^21
J'ai calculé lambda par la relation lambda= ln2/t(1/2). J'ai trouvé lambda= 1,4*10^11
Ensuite j'ai voulu calculer le nombre de noyau restant aujourdui. j'ai pris 1921=t0=0seconde
2010=t1=89 ans
J'ai donc voulu calculer le nombre de noyaux restant a la date t1=89 à l'aide de la relation: N(t)=No*exp(-lambda*t)
Le problème c'est que je trouve N(t)= 0
Pourriez-vous me dire où me suis-je trompée svp?
une association a offert en 1921, un gramme de radium 226 à Marie Curie. La demie-vie t(1/2) du radium est 1600ans.
calculer la masse de radium restant aujourd'hui dans cet échantillon.
J'ai calucler le nombre de noyaux radioactifs initial par la relation No= n*Na. J'ai trouvé N=2,66*10^21
J'ai calculé lambda par la relation lambda= ln2/t(1/2). J'ai trouvé lambda= 1,4*10^11
Ensuite j'ai voulu calculer le nombre de noyau restant aujourdui. j'ai pris 1921=t0=0seconde
2010=t1=89 ans
J'ai donc voulu calculer le nombre de noyaux restant a la date t1=89 à l'aide de la relation: N(t)=No*exp(-lambda*t)
Le problème c'est que je trouve N(t)= 0
Pourriez-vous me dire où me suis-je trompée svp?
Re: le nucléaire
Bonjour Cyndel,
Vous faites une erreur de puissance de 10 dans le calcul de lambda, en s.
Vous pouviez ou pourriez utiliser l'année comme unité de temps; ce serait plus simple, ou moins source d'erreurs !
Je vous laisse corriger et attends votre réponse.
Vous faites une erreur de puissance de 10 dans le calcul de lambda, en s.
Vous pouviez ou pourriez utiliser l'année comme unité de temps; ce serait plus simple, ou moins source d'erreurs !
Je vous laisse corriger et attends votre réponse.
Re: le nucléaire
merci beaucoup, effectivement je me suis trompée pour lambda, c'est en faite 1,44*10^-11 (si je mets les années en s)
mon N(t) est alors égale à 2,56*10^21
mon N(t) est alors égale à 2,56*10^21
Re: le nucléaire
Oui ! N'oubliez pas d'indiquer l'unité, c'est-à-dire 2,56.10^21 noyaux.