Page 1 sur 1
Coordonnées et equation de la trajectoire
Posté : dim. 13 juin 2010 11:40
par Manon TS
Bonjour
En pleine revisions pour le bac je me suis rendu copte que je ne comprenais pas comment on faisait pour trouver les coordonnées du vecteur vitesse et du vecteur acceleration, il s'en suit alors de l'établissement de l'équation de la trajectoire.
J'ai essayé de comprendre avec des sujets type bac comme "le hockey sur gazon mais je n'arrive pas a comprendre la methode.
Merci d'avance
Re: Coordonnées et equation de la trajectoire
Posté : dim. 13 juin 2010 12:05
par SoS(13)
Bonjour Manon,
La méthode est toujours la même :
- Faire le bilan des forces (seulement le poids dans le cas d'un projectile si poussée d'Archimède et frottements sont négligés).
- A partir de la deuxième loi de Newton, donner l'expression vectorielle de l'accélération (vecteur a = vecteur g dans le cas précédent).
- Projeter ce vecteur sur les deux axes proposés dans l'énoncé ou choisis par soi-même (attention au signe sur l'axe vertical).
- Sur chaque axe, on obtient la vitesse par la primitive de l'accélération à laquelle on ajoute une constante qui dépend des conditions initiales de cette vitesse.
- A nouveau sur chaque axe, on obtient la position par la primitive de la vitesse à laquelle on ajoute une constante qui dépend des conditions initiales de cette position.
- Enfin l'élimination du temps entre les deux coordonnées conduit à l'équation de la trajectoire.
N'hésiter pas à demander des compléments sur l'une de ces étapes.
Re: Coordonnées et equation de la trajectoire
Posté : dim. 13 juin 2010 14:27
par Manon TS
D'accord, le plus gros est compris, il me reste plus qu'a l'appliquerpar contre je ne comprends pas comment l'on obtient un Cosinus ou un sinus ?
Re: Coordonnées et equation de la trajectoire
Posté : dim. 13 juin 2010 14:40
par SoS(13)
Le cosinus et le sinus de l'angle entre la vitesse initiale et l'axe horizontal, sont dus à la projection de cette vitesse initiale sur les axes.
Ces deux termes sont les constantes d'intégration lors du calcul de la vitesse.
Re: Coordonnées et equation de la trajectoire
Posté : dim. 13 juin 2010 17:37
par Manon TS
Donc c'est en fonction de la trigonometrie
Re: Coordonnées et equation de la trajectoire
Posté : dim. 13 juin 2010 18:01
par SoS(13)
Bien entendu !