Page 1 sur 1

Chute libre

Posté : dim. 31 mars 2013 00:58
par Pierre s
Bonsoir. J ai un gros problème avec mon exercice, pourriez vous m aider s il vous plait? Alors c est un solide en chute libre sans vitesse initiale. On le lâche d' une hauteur H et il parcours 35m pendant sa dernière seconde de chute. Dans la correction on a prit l axe vers le bas avec origine le point de départ de la chute. On obtient donc une équation de trajectoire: z(t) = 5t2
Après on dit que a la date t= t sol - 1 sec on est a 35 m au dessus du sol. Après personnellement je n avais pas fait comme la correction. J ai mis z ( tsol -1sec) = 5( tsol -1)2 après on développe on obtient une équation du second degré :
5t2 - 10t -30=0
On calcule delta , j ai trouve 700, puis la solution je trouve 3,65s ce qui entraine que la hauteur totale de chute serai 66m. Mais mon prof a fait 35m = zsol-zA
zA(t) = 5(tsol -1)2 et il finit par trouver la hauteur de chute = 80 m ! Donc je ne comprend pas pourquoi ce que j ai fait est faux et je ne me serais jamais dit de faire comme lui a fait.
Et j ai essayer de refaire l exo en chantant l orientation de l axe mais la a nouveau je trouve quelque chose d' anormal encore pire car c est impossible je trouve une hauteur de chute de 30m .

Re: Chute libre

Posté : dim. 31 mars 2013 10:26
par SoS(13)
Bonjour Pierre,
Dans votre raisonnement, vous avez pris z(tsol-1) = 35m, or ce n'est pas la donnée de l'exercice car l'origine est prise au point de départ de la chute.
Encore une fois, un petit schéma de la situation vous aurait permis d'y voir clair dans les données du texte.

Re: Chute libre

Posté : dim. 31 mars 2013 19:44
par Pierre
Mais a chaque foi je fais un schéma. C est bon j ai compris qd l axe va vers le bas, mais je n arrive toujours pas a trouver un résultat cohérent si je l oriente vers le haut. Il vaut peut être mieux toujours orienter son axe dans le sens de déplacement du solide?

Re: Chute libre

Posté : dim. 31 mars 2013 19:59
par SoS(13)
Oui Pierre, il est plus prudent d'orienter l'axe dans le sens du mouvement car cela évite souvent des erreurs de signe.
Dans l'exercice que vous avez traité, si vous orientez l'axe vers le haut, cela change l'équation du mouvement mais aussi les valeurs de z !

Re: Chute libre

Posté : dim. 31 mars 2013 23:24
par Pierre s
Oui du coup z(t) = -5t2 + H
Avc H la hauteur de chute.

Re: Chute libre

Posté : dim. 31 mars 2013 23:45
par SoS(13)
Oui, si vous prenez l'origine au sol sinon z(t) = -5t² si vous prenez toujours l'origine au point de départ.

Re: Chute libre

Posté : mar. 2 avr. 2013 11:17
par Pierre s
Oui. Je ne comprend pas, car meme avec la bonne équation je ne trouve pas.

Re: Chute libre

Posté : mar. 2 avr. 2013 16:35
par SoS(38)
Bonjour,

Si vous repartez de l'équation z = H - 5 t², regardez ce qu'il en est pour les deux conditions.

Quelle est z pour tsol ?

Quelle est z pour (t-1)?

Vous devriez conclure avec votre technique et les deux équations trouvées.

Re: Chute libre

Posté : mar. 2 avr. 2013 23:54
par Pierre
Pour tsol z=o
Alors je ne sais pa si g est correct, mais z(tsol) = -5tsol+H
Donc 5tsol 2 = H
Et z( tsol-1) = 35 = -5tsol2 + 10tsol-5 +H
D' ou 10tsol -5= 35
Alors t sol = 3
et H = 45.
Si c est bon je crois!

Re: Chute libre

Posté : mer. 3 avr. 2013 00:10
par SoS(43)
Bonsoir Pierre,
Vous avez juste fait une petite erreur de calcul à la fin : si 10tsol -5= 35 alors t sol n'est pas égal à 3 s mais à .... Vous verrez quand calculant H vous retrouverez la valeur donnée par votre professeur (80 m). Vous auriez pu vous douter quand ne trouvant pas ce résultat cela signifiait qu'il y avait un problème. Refaite le calcul de tsol, c'est très simple et vous y êtes presque.

Re: Chute libre

Posté : mer. 3 avr. 2013 09:06
par Pierre
Pardon 4s. C est bon ça fait 80. Oui mais je n avais pas réfléchi trouvant 45m c est ce que ce n est pas H mais h. Je vous remercie