Spectre de l'hydrogène en équation.
Posté : mer. 12 oct. 2011 18:41
Bonjour,
J'ai un exercice que je n'arrive pas à resoudre.
Voici l'énoncé :
A partir de 1885, les physiciens ont découvert que les longueurs d'ondes des raies du spectre de l'hydrogène obéissent à la loi mathématique suivante (formule de Rydberg) :
1/Lambda = Rh(1/p²-1/q²)
Où Rh est une constante et p et q sont des nombres entiers non nuls.
Cette formule contribua à la découverte de la quantification des énergies de l'atome d'hydrogène par Bohr en 1913, et lui permit d'établir que les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation suivante (Formule de Bohr) :
En=-E0/n2
Où n est un entier supérieur à 0 et E0=13,6eV
Questions :
1. Comment la formule de Bohr montre-t-elle que les énergies de l'atome d'hydrogène sont quantifiées ?
2. Quelle est la valeur minimale de En ?
A quel état particulier de l'atome correspond-elle ?
Comment qualifie-t-on les autres états ?
Quelle est la signification physique de n ?
3. En utilisant la formule de Bohr, exprimer l'énergie d'un photon émis lors d'une transition du niveau q au p (q>p).
4. Montrer que la longueur d'onde de ce photon est donnée par la formule de Rydberg et donner l'expression de Rh en fonction de E0, h et c.
Il serai sympa de le résoudre pour moi, pour que j'en comprenne les subtilités.
Merci d'avance .
J'ai un exercice que je n'arrive pas à resoudre.
Voici l'énoncé :
A partir de 1885, les physiciens ont découvert que les longueurs d'ondes des raies du spectre de l'hydrogène obéissent à la loi mathématique suivante (formule de Rydberg) :
1/Lambda = Rh(1/p²-1/q²)
Où Rh est une constante et p et q sont des nombres entiers non nuls.
Cette formule contribua à la découverte de la quantification des énergies de l'atome d'hydrogène par Bohr en 1913, et lui permit d'établir que les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation suivante (Formule de Bohr) :
En=-E0/n2
Où n est un entier supérieur à 0 et E0=13,6eV
Questions :
1. Comment la formule de Bohr montre-t-elle que les énergies de l'atome d'hydrogène sont quantifiées ?
2. Quelle est la valeur minimale de En ?
A quel état particulier de l'atome correspond-elle ?
Comment qualifie-t-on les autres états ?
Quelle est la signification physique de n ?
3. En utilisant la formule de Bohr, exprimer l'énergie d'un photon émis lors d'une transition du niveau q au p (q>p).
4. Montrer que la longueur d'onde de ce photon est donnée par la formule de Rydberg et donner l'expression de Rh en fonction de E0, h et c.
Il serai sympa de le résoudre pour moi, pour que j'en comprenne les subtilités.
Merci d'avance .